Extremal and Probabilistic Graph Theory Lecture 9 March 29, Tuesday

Recall that \mathcal{F} is a family of graphs, we have:

Theorem 7.1 (Erdős-Stone-Simonovits).

$$ex(n,\mathcal{F}) = \left(1 - \frac{1}{\chi(\mathcal{F}) - 1} + o(1)\right) \binom{n}{2}$$

Definition 7.2. The *edit-distance* d(G, H) of 2 graphs G and H with the same vertex set is the minimum k such that G can be obtained from H by adding or deleting k edges.

Remark. $d(G, H) = \min_{\pi} |E(G_{\pi})\Delta E(H_{\pi})|$ where $\pi: V \to V$ is a bijection.

Theorem 7.3 (Erdős-Simonovits Stability Theorem). For $\forall \varepsilon > 0$, and a family \mathcal{F} of graphs with $\chi(\mathcal{F}) = r + 1$, there is a $\delta > 0$ and n_0 such that if G is $\mathcal{F} - f$ ree with at least n_0 vertices, then $e(G) \ge (1 - \frac{1}{r})\binom{n}{2} - \delta n^2$ implies that G is "close" to $T_r(n)$.

Remark. This theorem means $d(G, T_r(n)) \leq \varepsilon n^2$.

We prove the following version which is for $\mathcal{F} = \{K_{r+1}\}$

Theorem 7.4 (Füredi,2015). If G is an n-vertex $K_{r+1} - free$ graph with $e(G) = e(T_r(n)) - t$, then there exists an r-partite subgraph H of G such that $e(H) \ge e(G) - t$.

Remark. Note that t here is arbitrary! We don't need any assumption on t.

Proof. We will use the so-called Erdös degree majorization algorithm, which will find a partition $V(G) = V_1 \cup V_2 \cup \cdots \vee V_r$ such $\sum_{i=1}^r e(G[V_i]) \leq t$ $(S \subset G, G[S])$ is the induced subgraph on S of G. Let $x_1 \in V(G)$ be a vertex of max degree. Let $V_1^+ = N(x_1)$ and $V_1 = V(G)/V_1^+$. Then

$$\sum_{v \in V_1} d_G(v) \le \sum_{u \in V_1} d(x_1) = |v_1| |v_1^+|$$
$$\sum_{v \in V_1} d_G(v) = 2e(G[V_1]) + e(V_1, V_1^+)$$

In general, let x_i be a vertex in $G[V_{i-1}^+]$ of max degree. Let $V_i^+ = V_{i-1}^+ \cap N_G(x_i)$ and $V_i = V_{i-1}^+ / V_i^+$, then

$$2e(G[V_i]) + e(V_i, V_i^+) = \sum_{v \in V_i} d_{G[V_{i-1}^+]}(v) \le |V_i^+| |V_i|$$

This procedure must terminate, say in s steps (when V_{s-1}^+ is an independent set, then $V_s = V_{s-1}^+$). Thus we get $V(G) = V_1 \cup V_2 \cup \cdots \cup V_s$ and s vertices x_1, x_2, \cdots, x_s where $x_i \in V_i$. By the algorithm, $G[\{x_1, x_2, \cdots, x_s\}] = K_s$, so $s \leq r$. Note that $V_i^+ = V - V_1 \cup V_2 \cup \cdots \cup V_i$, so

$$2e(G[V_i]) + e(V_i, \bigcup_{j>i} V_j) \le |V_i|| \bigcup_{j>i} V_j$$

Summing over $1 \le i \le s$, we have

$$e(G) + \sum_{i=1}^{s} e(G[V_i]) \le \sum_{i=1}^{s} |V_i| |\cup_{j>i} V_j| = e(K_{V_1, V_2, \cdots, V_s}) \le e(T_r(n))$$

 So

$$\sum_{i=1}^{s} e(G[V_i]) \le e(T_r(n)) - e(G) = t.$$

Remark. Here, some V_i is allowed to be empty

Corollary 7.5 (Stability for K_{r+1}). Suppose G is $K_{r+1} - free$ with $e(G) \ge e(T_r(n)) - t$, then there is a complete r-graph $K = K_{V_1, V_2, \dots, V_r}$ with $V(G) = \bigcup_{i=1}^r V_i$ satisfying $d(G, K) \le 3t$.

Proof. Left as an exercise. Note that

$$e(H) \ge e(G) - t = e(T_r(n)) - 2t \ge e(K_{V_1, V_2, \cdots, V_r}) - 2t$$

The stability method, in rough terms, says the following: we first determine the appropriate structure of near extremal graphs (usually achieved by stability theorems), and then use this approximate structure to obtain exact structure of exactly extremal graphs.

Definition 7.6. A graph F is r-edge-critical if there exists an edge e such that $\chi(F - e) < \chi(F) = r$.

Example 7.7. K_r, C_{2k+1}, \cdots

Recall that Turán Theorem asserts that $ex(n, K_{r+1}) = e(T_r(n))$ and the unique extremal graph is $T_r(n)$.

Next, we will use the following theorem as a running example of the stability method, which shows that the extremal graph for edge-critical graphs F is also the Turán graph.

Theorem 7.8. Let F be an r + 1-edge-critical graph for $r \ge 2$. Then $ex(n, F) = e(T_r(n))$ and the unique extremal graph is $T_r(n)$ provided that n is sufficiently large (say $n \ge n_0(F)$).