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Recall that F is a family of graphs, we have:

Theorem 7.1 (Erdős-Stone-Simonovits).

ex(n,F) = (1− 1

χ(F)− 1
+ o(1))

(
n

2

)
Definition 7.2. The edit-distance d(G,H) of 2 graphs G and H with the same vertex set is the
minimum k such that G can be obtained from H by adding or deleting k edges.

Remark. d(G,H) = minπ |E(Gπ)∆E(Hπ)| where π : V → V is a bijection.

Theorem 7.3 (Erdős-Simonovits Stability Theorem). For ∀ε > 0, and a family F of graphs with
χ(F) = r + 1, there is a δ > 0 and n0 such that if G is F − free with at least n0 vertices, then
e(G) ≥ (1− 1

r )
(
n
2

)
− δn2 implies that G is “close” to Tr(n).

Remark. This theorem means d(G,Tr(n)) ≤ εn2.

We prove the following version which is for F = {Kr+1}

Theorem 7.4 (Füredi,2015). If G is an n-vertex Kr+1 − free graph with e(G) = e(Tr(n)) − t,
then there exists an r-partite subgraph H of G such that e(H) ≥ e(G)− t.

Remark. Note that t here is arbitrary! We don’t need any assumption on t.

Proof. We will use the so-called Erdös degree majorization algorithm, which will find a partition
V (G) = V1 ∪V2 ∪ · · ·Vr such

∑r
i=1 e(G[Vi]) ≤ t (S ⊂ G,G[S] is the induced subgraph on S of G).

Let x1 ∈ V (G) be a vertex of max degree. Let V +
1 = N(x1) and V1 = V (G)/V +

1 . Then∑
v∈V1

dG(v) ≤
∑
u∈V1

d(x1) = |v1||v+1 |

∑
v∈V1

dG(v) = 2e(G[V1]) + e(V1, V
+
1 )

In general, let xi be a vertex in G[V +
i−1] of max degree. Let V +

i = V +
i−1∩NG(xi) and Vi = V +

i−1/V
+
i ,

then
2e(G[Vi]) + e(Vi, V

+
i ) =

∑
v∈Vi

dG[V +
i−1]

(v) ≤ |V +
i ||Vi|

This procedure must terminate, say in s steps (when V +
s−1 is an independent set, then Vs = V +

s−1).
Thus we get V (G) = V1 ∪ V2 ∪ · · · ∪ Vs and s vertices x1, x2, · · · , xs where xi ∈ Vi. By the
algorithm, G[{x1, x2, · · · , xs}] = Ks, so s ≤ r. Note that V +

i = V − V1 ∪ V2 ∪ · · · ∪ Vi, so

2e(G[Vi]) + e(Vi,∪j>iVj) ≤ |Vi|| ∪j>i Vj |

1



Summing over 1 ≤ i ≤ s, we have

e(G) +
s∑
i=1

e(G[Vi]) ≤
s∑
i=1

|Vi|| ∪j>i Vj | = e(KV1,V2,··· ,Vs) ≤ e(Tr(n))

So
s∑
i=1

e(G[Vi]) ≤ e(Tr(n))− e(G) = t.

Remark. Here, some Vi is allowed to be empty

Corollary 7.5 (Stability for Kr+1). Suppose G is Kr+1 − free with e(G) ≥ e(Tr(n)) − t, then
there is a complete r-graph K = KV1,V2,··· ,Vr with V (G) = ∪ri=1Vi satisfying d(G,K) ≤ 3t.

Proof. Left as an exercise. Note that

e(H) ≥ e(G)− t = e(Tr(n))− 2t ≥ e(KV1,V2,··· ,Vr)− 2t

The stability method, in rough terms, says the following: we first determine the appropriate
structure of near extremal graphs (usually achieved by stability theorems), and then use this
approximate structure to obtain exact structure of exactly extremal graphs.

Definition 7.6. A graph F is r-edge-critical if there exists an edge e such that χ(F − e) <
χ(F ) = r.

Example 7.7. Kr, C2k+1, · · ·

Recall that Turán Theorem asserts that ex(n,Kr+1) = e(Tr(n)) and the unique extremal
graph is Tr(n).

Next, we will use the following theorem as a running example of the stability method, which
shows that the extremal graph for edge-critical graphs F is also the Turán graph.

Theorem 7.8. Let F be an r + 1-edge-critical graph for r ≥ 2. Then ex(n, F ) = e(Tr(n)) and
the unique extremal graph is Tr(n) provided that n is sufficiently large (say n ≥ n0(F )).
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